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The three basic simultaneous differential equations describing the phenomena of 
thermoluminescence and thermally stimulated conductivity are solved numerically for 
any given set of trapping parameters and without any additional assumptions, thus 
enabling us to simulate the TL and TSC phenomena. 

The method employs a change of variable by which the high sensitivity of the solution 
to small numerical errors is overcome. Use is then made of an improved Runge-Kutta 
method for the solution of the new set of differential equations. Previous methods for 
extracting information from glow curves are tested using these calculated curves as data. 
The often used assumption 1 ti, / < 1 rt 1, / Gz I is explored and found to be correct for 
most of the temperature range of interest. 

INTRODUCTION 

The model explaining the appearance of a single thermoluminescence (TL) 
glow peak and its corresponding thermally stimulated conductivity (TSC) peak 
was represented mathematically by Halperin and Braner [l] by a set of three 
linear simultaneous equation as follows: 

-dmldt = Amn, , (1) 

-dn/dt = P,,n exp(-E/kT) - B(N - n) n, , (2) 

dn,ldt = dmjdt - dnldt, (3) 

where N is the concentration of traps (cm-“); m is the concentration of holes 
(electrons) in recombination centers (cm-3); n, the concentration of electrons 
(holes) in traps (cm-3); n, concentration of free electrons (holes) in the conduction 
(valence) band (cm-“); t, the time; A and B, recombination and retrapping proba- 
bilities (cm3 set-l), respectively; PO , the pre-exponential (frequency) factor 
(set-l); E, the activation energy (eV); k, the Boltzmann constant (eV/K); and T, 
the absolute temperature (K). 

The luminescence intensity is given by Z = -a(dm/dt) where 01 is a constant 
and the TSC by (T = eqz, where u is the electrical conductivity; p, the mobility 
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of free carriers; and e, the absolute value of the electron charge. The heating 
function T = T(t) can be chosen at will. The phosphorescence decay can be con- 
sidered as a special case for T = const. In many other cases the linear heating 
function T = T,, + fit is considered, for which the heating rate dT/dt = ,5 is 
constant. 

This set of equations has previously been solved numerically [2-61 by assuming 
that 

I dn,ldt I Q I dnldt I, n, < 4 (4) 

assumptions that seem reasonable in many cases. It is, however, of interest to 
solve the equations without these simplifying assumptions. By doing so we can, 
among other things, test the validity of the above-mentioned assumptions (4). 
It is to be mentioned that this set of equations has previously been solved [7] for 
the special case of short time phosphorescence without the limiting conditions (4). 

APPROACH TO THE PROBLEM 

Equations (l-3) are not adaptable for numerical solution in the original form 
since 1 dm/dt I M I dn/dt I > I dn,/dt ] in most cases. A small relative error in 
Eqs. (l)-(2) would cause a large error in dn,/dt; thus the solution tends to “blow 
up” after a certain time. The same problem arises in any transformation of the 
equations, in which at least one of the derivatives is computed by the multiplication 
Of% 3 while n, is computed directly from m and n. 

We have overcome this difficulty by defining a new integration variable 

x(t) = 1’ n, dt, (5) 
to 

where t is the time having initial value t, . For any y which is a function of time 
we denote dy/dt by j, dy/dx by y’ and y(ti) by yi . From Eq. (5) we get 

j = y’(dx/dt) = y’n, . (6) 

From Eqs. (l)-(2) and (6) we get a set of three linear differential equations with 
the independent variable x and the dependent variables t, m and n as follows: 

m’ = -Am, 

n’ = -P&/n,) exp(-E/kT) + B(N - n), 

t’ = l/nC . 

(7) 

(8) 

(9) 
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In the simple case of a linear heating rate, T is given by T = T,, + Pt; for any 
other case we assume that T = T(t) is some known function. n, is computed 
separately in such a way as will cause minimal error in its value with the aid of 
Eq. (3) as explained further. Equation (7) is independent of Eqs. (8) and (9) and 
can therefore be solved directly; 

m = m, exp(--dx), 

where m, is the initial concentration of carriers in centers. Equations (8) and (9) 
therefore constitute a set of two coupled linear differential equations which are 
to be solved. 

THE NUMERICAL METHOD 

As usual, the numerical solution of differential equations requires the computa- 
tion of the derivatives (in our case, ni’ and ti’) for given values of the variables 
(xi , ti , ni), in each step i of the integration. We consider the case where A, B, PO , N 
and j3 are constants and the initial conditions m, , n,, , no0 and To (at t,,) are known. 
The initial values n,’ and to’ are computed from Eqs. (8) and (9). 

The first step of the solution (x1) assumes that we are in the initial rise region; 
therefore we have 

and 

e1 = [--Amdz,,, ==pWkT,)l exp(--EWA (11) 

n Cl = -&l(AmJ = (mdzc,iml) evWkTo - EIkTJ, (12) 

where m, is computed from Eq. (10). The insertion of nCl in Eqs. (8) and (9) 
produces values for n,’ and tl’. In the first step (and only there) we thus use the 
initial-rise assumption instead of Eq. (3) for evaluating the derivatives. We note 
that this assumption does not restrict the solution, as it holds true for low enough 
T,, in any insulating or semiconducting crystal. 

For i > 2, past values of In(mj) and tj (for-j < i) are used to fit a second order 
polynomial In(m) = at2 + bt + c through the three points ln(mJ, tl, for k = i, 
i-l,i-2.&isgivenby 

& = ti,,/nci = -(l/A)(d2/dt2)[ln(mi)]/{-(l/A)(d/dt)[ln(mi)]} = 2a/(b + 2atJ 

(13) 
From Eq. (3) we get 

ni’ = (tii - tiici)/nci = -Ami - n6i (14) 
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so that n,, can now be computed from Eq. (8): 

n,, = niPo exp(--E/kTJ/[B(N - ni) - n,‘]. 

ti is thus computed from Eq. (9). 

(15) 

The computation of Q’ and nCi by Eqs. (13)-(15) ensures small errors in these 
variables. If j(d2/dt2)(ln mi)i is small, large numerical errors may result in & 
[Eq. (13)]. On the other hand Ami (which is relatively accurate) is much larger 
than nLi [Eq. (14)]; thus ni’ and therefore n,i would be more accurate. If 
l(d2/dt2)(ln mJ[ is large, & would also be more accurate [Eq. (13)]; thus ni’ (and 
n,J would be accurate even when 1 n:i / > Ami . A difficulty may arise only when 
m, and 1 Gzi / are very small, in which case Ami and d2/dt2(ln mi) become small. 
Fortunately this can happen only at the end of the decay of the TL curve and does 
not prevent the computation of the TL peak. 

The computer program written for solving Eqs. (7)-(g) uses an improved Runge- 
Kutta method for the solution of simultaneous linear differential equations [8]. 
One starts by choosing a set of the parameters A, B, P0 , N and j3 and the initial 
values m, , no , n,, and To . The computed results ti , mi , ni , nci , V& , tii and tici 
are printed out and thus graphs of j ti / (to which the TL intensity is proportional) 
and n, as functions oft are plotted. The computation intervals are defined through 
the variable x and therefore are not constant in time (i.e., ti - ti-1 not necessarily 
equal to ti+l - tJ. In ranges where n,i increases during the process, the time 
intervals decrease [see Eq. (7)]. In order to avoid contraction of the time intervals, 
the maximal allowed step in the integration variable x is doubled when ti - ti-l 
becomes smaller than 0.01 sec. Of course, ti - tidl depends on the choice of 
parameters and initial values, since ti is solved from the differential equations. 

Equations (7)-(g) can easily be solved as well for a nonconstant heating rate 
[T = T(t)] or with parameters which vary with temperature by inserting as data 
the values of the parameters as functions of temperature. Phosphorescence curves 
can be otained by taking /3 = 0. 

The computation usually ends when the final value of t, a priori chosen, is 
reached. Sometimes, due to numerical errors (usually when m or n become very 
small) the run has to be stopped before t final is reached. 

The program was extended to solve a system of equations including several 
traps and recombination centers (assuming that the transitions into the recombina- 
tion centers are solely from the conduction band). The set of differential equations 
is now 

dmJdt = -n,A,m, , i=l P, >***, (16) 
dnj/dt = -Pojnj exp(-EJkT) + n,Bj(Nj - n,), j = I,..., q, (17) 

dn,ldt = 5 dmi/dt - i dnjldt. 
i=l j=l 

(18) 
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The solution is similarly obtained by using the new integration variable x 
given by (5). 

RESULTS AND DISCUSSION 

Several solutions, corresponding to different sets of parameters and initial 
values were computed. These solutions made it possible to investigate quantita- 
tively a number of assumptions usually made in glow curves analysis. 

Figure 1 shows the solutions / ni / and n, as functions of temperature where the 
conditions are such that first order TL and TSC (n,) peaks are found. In this 

1.4 

0.6 

69 93 97 101 105 109 113 117 I2 TW 

FIG. 1. Calculated peaks of n, and I ti 1 vs. temperature. A = B = lo-’ cm3 see-I, P,, = 
1Ol4 set-I, E = 0.316 ev, m, = N = lOlo cm-3, n, = 108cm-3, /3 = lK/sec, n,, = 10cm-3, 
T, = 90°K. 

case the chosen recombination and retrapping probabilities A and B are the same 
whereas m, is larger than n, by two orders of magnitude. It is to be noted that 
this case is not the “classical” first order case where recombination is the domi- 
nating process as compared to retrapping. In this case, the recombination rate 
Am and the retrapping rate B(N - n) are about the same in all the temperature 
range, yet the geometrical factor ps = S/W is 0.418, where 6 = T, - T, and 
o = T2 - Tl and where T, is the temperature at the maximum intensity, and 
Tl and T, the low and high temperatures at half intensity, respectively. In the 
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present case, the curves of n, and 1 ti / have the same shape, thus the p0 value 
is the same for both. This value of -0.42 is characteristic of first order peaks [9]. 
Apart from the fact that a first order peak was thus found by the numerical solution 
of the differential equations without any additional assumption, the occurrence 
of first order peak can also be explained as follows. Assuming that 1 li, / < / ti 1 
and n, < II, it was found [l] that 

I = sn ev--E/W Am +gN _ ,,,) . (19) 

The term Am/(Am + B(N - n)) is reduced to unity when Am > B(N - n), 
thus yielding the usual first-order equation. In the present case, however, this 
term is very close to being a constant as well, although its value is Q; thus the first 
order peak results. Another important characteristic of the present case is that 
both the n, and 1 Gz 1 peaks have exactly the same shape. 

Figure 2 shows the TL and II, peaks where A = B and m, = n, . The TL peak 
is of second order kinetics, which is characterized by pg = 0.525 [9]. Another 
feature of these curves is that the maximum of the TL peak appears at a lower 
temperature than the corresponding maximum of the n, curve. This effect has 
already been proved generally [lo]. Thus, in principle this shift should have 
appeared in Fig. 1 as well, but the effect can be shown to be negligibly small 

(cm-‘) 

FIG. 2. Calculated peaks of n, and I 7ir I. A = B = lo-’ cm% SK-‘, m, = n, = lo* cm-3, 
N = 1O’O cm-3, PO = 1O’O seccl, E = 0.316ev, ,G = lK/sec, n,, = 4 x 103 crne3, T0 = 140K. 
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FIG. 3. Calculated peaks of n, and 1 ti 1. A = 3 x 1O-5 cm8 set’, B = lo-’ cmS SW-‘, 
m, = n, = lo8 cm-S, N = lOlo cm-$, PO = 10”’ set-I, E = 0.316ev, j3 = lK/sec, n,, = 0.8 cm-*, 
To = 1lOK. 
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FIG. 4. Calculated curves of n, and I +z 1. A = 5 x 1O-4 cma xc-‘, B = lo-’ cm8 set-‘, 
m, = 10’ cmda, n, = 108 cm-a, N = lOlo cm-3, PO = 1O1” set-I, E = 0.316ev, fi = lKsec-I, 
n co = 8.5 cm-*, T,, = 12OK. 
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when m changes only slightly during the process, as is the case in Fig. 1. The 
broad IZ, peak is also to be noted; this effect was described by Saunders [I 11. 

Figure 3 shows the two peaks for m, = IZ~ and A = 3 x 1O-5 cm3 set-l and 
B = lo-’ cm3 set-l. The parameters were chosen such that the TL peak would be 
neither of first nor of second order kinetics. The resulting curve is characterized 
by pg = 0.468. This value may correspond to an effective order of kinetics, I, [12] 
which is between 1 and 2 (about 1.4 in this special case). 

Figure 4 gives the TL peak and the IZ, curve for A = 5 x 1O-4 cm3 set-l, 
B = lo-’ cm3 set-l, m, = 10’ cm-3 and q, = 10s cm-3. This figure has two 
peculiarities: the n, curve is steadily increasing exponentially in the range of 
interest as found experimentally for semiconducting diamonds [13] and discussed 
for certain cases [4], and the tag value found for this TL peak is extremely small, 
about 0.308 which does not correspond to any reasonable effective order of 
kinetics. Such peaks, which are rather rarely found in experiments, were mentioned 
by Halperin and Braner [l] who showed that such an effect should be expected 
when there is a shortage of luminescence centers (namely, m, < n,). It is to be 
mentioned, again, that as compared to the peaks of Halperin and Braner, the 
curves are found presently without the assumption / ti, 1 Q 1 ti j. 

TABLE I 
Representative Values for Checking the Validity of the Condition / tic / << j li j 

Curve 1 Curve 3 

90 8.3 x 1O-4 5.0 x 10-K 5.0 x 10-b 110 4.3 x 10-4 1.7 x 10-4 1.7 x lo-’ 

95 7.1 x 10-S 4.0 x 10-L 4.0 x 10-4 120 6.9 x 1O-3 8.5 x lO+ 8.5 x 1O-6 

100 4.9 x 10-Z 3.6 x 1O-4 3.6 x lo-* 130 7.1 x 10-2 7.3 x IO-6 7.3 x 10-S 

105 2.5 x 10-l 3.0 x IO-4 3.0 x lo-” 140 4.5 x 10-l 6.9 x 1O-6 6.9 x 1O-6 

110 8.5 x 10-l 1.5 x IO-4 1.5 x 10-4 150 9.9 x 10-l 8.4 x 1O-5 8.4 x 1O-5 
115 6.0 x 10-l 4.0 x 10-4 4.0 x 10-4 160 2.5 x 10-l 6.4 x 1O-6 6.4 x 1O-5 

170 3.6 x lo-% 5.5 x 10-4 5.5 x 10-4 
180 7.4 x 1O-3 1.6 x 1O-3 1.6 x 10-3 

Curve 2 Curve 4 

140 1.3 x 10-Z 5.0 x 10-S 4.8 x 1O-2 120 3.6 x lo-* 1.0 x 10-4 1.0 x lo-’ 

150 7.2 x 1O-2 1.6 x 1O-2 1.6 x 10-a 125 1.2 x 10-l 5.1 x 10-b 5.1 x 10-b 

160 3.0 x 10-l 1.4 x 10-Z 1.4 x 10-Z 130 3.6 x 10-l 6.1 x 1O-6 6.1 x 10-s 

170 7.8 x 10-l 1.2 x 10-Z 1.2 x 10-Z 135 8.6 x 10-l 1.4 x 10-4 1.4 x 10-4 
180 9.8 x 10-l 9.9 x 10-S 9.8 x 1O-3 140 1.9 x 10-l 4.5 x 10-a 4.5 x 10-s 
190 6.0 x 10-l 5.6 x 1O-3 5.5 x 10-S 145 1.5 x 10-1 8.7 x 108 1.0 
200 2.6 x IO-’ 5.1 x 10-s 5.1 x 10-s 150 1.5 x 10-22 1.9 x 10’9 1.0 

210 1.0 x 10-l 3.4 x 10-a 3.6 x 1O-2 155 1.9 x 1O-s’ 3.2 x lob4 1.0 
220 4.1 x 10-Z 8.5 x 10-e 9.3 x 10-Z 

581/10/z-8 
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Table I gives some results of the test for the validity of the condition I ri, 1 < I li 1 
usually assumed in TL theory for the four cases given in Figs. (l-4). The values 
of ti(T)/ti(T,) in column 2 show the position of the various TL points as compared 
to the maximum. The corresponding values of columns 3 and 4 are equal as long 
as the above-mentioned condition is fulfilled; the values of 1 ri,(T)/ti(T)I are 
small in these ranges. It is clearly seen that the condition is not satisfied any more 
in the case related to Fig. (4) at temperatures above the maximum. 

Table II summarizes the results found for various sets of given parameters 
including those shown in Figs. (l-4) (Nos. 6, 10, 9 and 3 in the table, respectively). 
The table is arranged according to the increasing values of Pi, namely, starting 
from the case of “shortage of centers” through first order kinetics, “intermediate” 
order and second order TL peaks. 

CALCULATION OF ACTIVATION ENERGIES 

Having developed a simulating model for TL and TSC phenomena, it is easy 
to evaluate the theoretical accuracy of methods for calculating crystal parameters 
from TL and TX curves. We were interested in certain methods for calculating 
the activation energy E. 

These methods, using temperature of the peak maximum T, and the half 
intensity temperatures TI and T, were developed under the assumption that the 
peak has a definite order of kinetics. The order was assumed to be first or second 
in various methods, and any order 1 between 0.7 and 2.5 when interpolation (and 
extrapolation) between first and second order cases was applied [12]. In order to 
check the methods, we applied them to the general glow peaks calculated by the 
present method in order to find whether an effective value of 1 can be found such 
that the solution of --ri = s’ exp(-E/kT) nz would be close enough to our glow 
curve so that the methods for finding E from the latter can be used for the former. 

The three equations given by Chen [12] are 

E, = [1.51 + 3.0(~., - 0.42)] kTm2/T - [1.58 + 4.2& - 0.42)] 2kT,, (20) 

Es = [0.976 + 7.3& - 0.42)] kTm2/6, W) 

E, = [2.52 + 10.2(/.~., - 0.42)] kT,,,2/w - 2kT,, (22) 

where r is defined by r = T,,, - TI . Table III gives the found values of E, , Ea , 
E, , pU and T, for the 10 first curves given in Table II. Apart from the rare first 
three cases which have “abnormal” shape [l], all the methods give rather good 
values, E, being the best. As could be expected from an interpolation method, 
the values are excellent where the circumstances are such that the peaks are close 
to be of first or second order. For E, , however, the deviations from the correct 
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No. -Cl 

1 0.316 
2 0.316 
3 0.316 
4 0.316 
5 0.633 
6 0.316 
I 0.316 
8 0.316 
9 0.316 

10 0.316 

ET EB & 

0.311 -0.437 0.141 
0.318 -0.215 0.186 
0.342 0.114 0.276 
0.315 0.306 0.314 
0.630 0.631 0.628 
0.316 0.309 0.316 
0.315 0.317 0.318 
0.323 0.341 0.336 
0.331 0.344 0.339 
0.314 0.325 0.321 

TABLE 111 

Activation Energies by Various Methods 

PLO 

0.234 136.5 
0.256 136.6 
0.308 136.8 
0.416 109.9 
0.416 219.8 
0.418 112.1 
0.420 148. I 
0.454 148.6 
0.468 149.1 
0.525 177.8 

TWI 

value do not exceed 5 % even for intermediate order cases. This is usually com- 
parable to the possible experimental error. Even for the three first cases, the E, 
method gives good results since the “abnormality” of the peaks is demonstrated 
mainly in the high temperature portion. 

SUMMARY AND CONCLUSIONS 

The three simultaneous differential equations governing the processes of thermo- 
luminescence and thermally stimulated conductivity have been solved, for the 
first time, to the best of our knowledge, with no additional a priori assumptions 
made about the functions m, n and n, . The results are used for examining the 
assumptions made by previous investigators showing that those assumptions were 
usually rather good. Methods for evaluating the activation energy E were applied 
to the computed peaks, showing that at least one of these methods is very good 
for evaluating activation energies. It was seen, however, that the peaks’ shapes 
are less sensitive to the other parameters (see also [6, 71) and therefore the evalua- 
tion of these parameters (A, B, P, , etc.) would be much harder using only three 
measured values like Tl , T, and T, . More experimental points should be used, 
as well as information on the corresponding TSC curve. An investigation along 
these lines is under way now, and the results seem to be rather promising. 

As mentioned above, the kinetics order depends on the ratio between Am and 
B(N - n). This “order” will remain constant if Am > B(N - n) or Am < B(N - n) 
is true throughout the peak. This inequality can, however, change direction during 
the process so that the term “kinetics order” may become meaningless. This 
explains the “abnormality” of the first three peaks in Tables I and II (see also 
[l, 51). 
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Note. While considering some corrections in the manuscript as required by 
the referees (October 1971), we learnt of a paper describing the numerical solution 
of the equations governing the thermally stimulated processes (P. Kelly, M. J. 
Laubitz and P. Braunlich, Phys. Rev. B 4 (1971, 1960-68)). The computational 
method used in that paper was, however, entirely different and so were the chosen 
ranges of the parameters and some of the conclusions. 
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