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The three basic simultaneous differential equations describing the phenomena of
thermoluminescence and thermally stimulated conductivity are solved numerically for
any given set of trapping parameters and without any additional assumptions, thus
enabling us to simulate the TL and TSC phenomena.

The method employs a change of variable by which the high sensitivity of the solution
to small numerical errors is overcome. Use is then made of an improved Runge-Kutta
method for the solution of the new set of differential equations. Previous methods for
extracting information from glow curves are tested using these calculated curves as data.
The often used assumption |7, | <€ | 7|, | m | is explored and found to be correct for
most of the temperature range of interest.

INTRODUCTION

The model explaining the appearance of a single thermoluminescence (TL)
glow peak and its corresponding thermally stimulated conductivity (TSC) peak
was represented mathematically by Halperin and Braner [1] by a set of three
linear simultaneous equation as follows:

—dm/|dt = Amn, , (1)
—dn|dt = Pynexp(—E/kT) — B(N — n) n,, 2)
dn./dt = dmldt — dn|dt, 3)

where N is the concentration of traps (cm~%); m is the concentration of holes
(electrons) in recombination centers (cm=~3); n, the concentration of electrons
(holes) in traps (cm—%); n, concentration of free electrons (holes) in the conduction
(valence) band (cm—%); ¢, the time; 4 and B, recombination and retrapping proba-
bilities (cm®sec™), respectively; P,, the pre-exponential (frequency) factor
(sec™); E, the activation energy (eV); k, the Boltzmann constant (eV/K); and 7,
the absolute temperature (K).

The luminescence intensity is given by I = —«(dm/dt) where « is a constant
and the TSC by ¢ = eun, where ¢ is the electrical conductivity; u, the mobility
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of free carriers; and e, the absolute value of the electron charge. The heating
function T = T(¢) can be chosen at will. The phosphorescence decay can be con-
sidered as a special case for 7 = const. In many other cases the linear heating
function T'= T, + Bt is considered, for which the heating rate d7/dt =B is
constant.

This set of equations has previously been solved numerically [2-6] by assuming
that

ldnoldt | < | dnjdt],  n.<n, 4)

assumptions that seem reasonable in many cases. It is, however, of interest to
solve the equations without these simplifying assumptions. By doing so we can,
among other things, test the validity of the above-mentioned assumptions (4).
It is to be mentioned that this set of equations has previously been solved [7] for
the special case of short time phosphorescence without the limiting conditions (4).

APPROACH TO THE PROBLEM

Equations (1-3) are not adaptable for numerical solution in the original form
since | dm/dt | ~ | dnjdt |> | dn,dt| in most cases. A small relative error in
Eqs. (1)-(2) would cause a large error in dn,/dt; thus the solution tends to “blow
up” after a certain time. The same problem arises in any transformation of the
equations, in which at least one of the derivatives is computed by the multiplication
of n,, while »n, is computed directly from m and n.

We have overcome this difficulty by defining a new integration variable

*() = | ", dt, )

Ly

where ¢ is the time having initial value #,. For any y which is a function of time
we denote dy/dt by y, dy/dx by y’ and y(¢;) by y; . From Eq. (5) we get

y = y'(dx|dt) = y'n,. (6)

From Egs. (1)-(2) and (6) we get a set of three linear differential equations with
the independent variable x and the dependent variables ¢, m and #n as follows:

m = —Am, )

n' = —Pyn/n;) exp(—E[kT) + B(N — n), @®)

t' = 1/n,. )]
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In the simple case of a linear heating rate, T is given by T' = T, + Bt; for any
other case we assume that 7 = 7(¢) is some known function. n, is computed
separately in such a way as will cause minimal error in its value with the aid of
Eq. (3) as explained further. Equation (7) is independent of Egs. (8) and (9) and
can therefore be solved directly;

m = myexp(—Ax), (10)

where m, is the initial concentration of carriers in centers. Equations (8) and (9)
therefore constitute a set of two coupled linear differential equations which are
to be solved.

THE NUMERICAL METHOD

As usual, the numerical solution of differential equations requires the computa-
tion of the derivatives (in our case, n;/ and t,') for given values of the variables
(x;, t; , ny), in each step i of the integration. We consider the case where 4, B, Py, N
and 8 are constants and the initial conditions m, , ng , 1, and T (at £,) are known.
The initial values n,” and ¢," are computed from Eqgs. (8) and (9).

The first step of the solution (x;) assumes that we are in the initial rise region;
therefore we have

my = [—Amgn, exp(E[kTo)] exp(—E[kT), (1)
and
Ny = —my[(Amy) = (m()nco/ml) exp(E/kT, — E[kT), (12)

where m, is computed from Eq. (10). The insertion of n,; in Egs. (8) and (9)
produces values for n," and #'. In the first step (and only there) we thus use the
initial-rise assumption instead of Eq. (3) for evaluating the derivatives. We note
that this assumption does not restrict the solution, as it holds true for low enough
T, in any insulating or semiconducting crystal.

For i > 2, past values of In(m;) and ¢; (for j < i) are used to fit a second order
polynomial In(m) = at® + bt + ¢ through the three points In(m;,), # for k ==,
i—1,i— 2. n,is given by

Mg = Tiegffes = —(1/A)(d?*/dt*)[In(my)J{—(1/A)(d/dD)[In(m)]; = 2a/(b + 2at,)

(13)
From Eq. (3) we get

n' = (ti; — tig)lne; = —Amy — ny (14
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so that n,; can now be computed from Eq. (8):
ne = nPoexp(—EkT)/[B(N — n;)) — n/]. (15)

t; is thus computed from Eq. (9).

The computation of n,” and n,; by Eqgs. (13)~(15) ensures small errors in these
variables. If |(d%/df*)(In m;)| is small, large numerical errors may result in n,
[Eq. (13)]. On the other hand A4m; (which is relatively accurate) is much larger
than n,; [Eq. (14)]; thus »,/ and therefore n, would be more accurate. If
[(d%/dt®)(In m;)| is large, n,; would also be more accurate [Eq. (13)]; thus »;” (and
n,;) would be accurate even when | n; | > Am, . A difficulty may arise only when
m; and | m; | are very small, in which case Am; and d%/dt*In m,) become small.
Fortunately this can happen only at the end of the decay of the TL curve and does
not prevent the computation of the TL peak.

The computer program written for solving Egs. (7)—(9) uses an improved Runge-
Kutta method for the solution of simultaneous linear differential equations [8].
One starts by choosing a set of the parameters 4, B, Py, N and 8 and the initial
values my , ny, ny and T, . The computed results ¢;, m;, n;, n,;, m;, #; and 7,
are printed out and thus graphs of | 7 | (to which the TL intensity is proportional)
and n, as functions of ¢ are plotted. The computation intervals are defined through
the variable x and therefore are not constant in time (i.e., #; — f,_; not necessarily
equal to t,,; — t;). In ranges where n,; increases during the process, the time
intervals decrease [see Eq. (7)]. In order to avoid contraction of the time intervals,
the maximal allowed step in the integration variable x is doubled when ¢, — 1, ;
becomes smaller than 0.01 sec. Of course, t; — f, ; depends on the choice of
parameters and initial values, since ¢; is solved from the differential equations.

Equations (7)-(9) can easily be solved as well for a nonconstant heating rate
[T = T()] or with parameters which vary with temperature by inserting as data
the values of the parameters as functions of temperature. Phosphorescence curves
can be otained by taking 8 = 0.

The computation usually ends when the final value of ¢, a priori chosen, is
reached. Sometimes, due to numerical errors (usually when m or # become very
small) the run has to be stopped before ¢ final is reached.

The program was extended to solve a system of equations including several
traps and recombination centers (assuming that the transitions into the recombina-
tion centers are solely from the conduction band). The set of differential equations
is now

dmdt = —n,Am;, i=1,.,P, (16)
dnldt = — Pyn; exp(—E;[kT) + n,By(N; — n;), j=1,..,4q, an

P a
dnojdt = dmg/dt — Y dn,/dt. (18)
i-1 i1
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The solution is similarly obtained by using the new integration variable x
given by (5).

RESULTS AND DISCUSSION

Several solutions, corresponding to different sets of parameters and initial
values were computed. These solutions made it possible to investigate quantita-
tively a number of assumptions usually made in glow curves analysis.

Figure 1 shows the solutions | 7 | and n, as functions of temperature where the
conditions are such that first order TL and TSC (n,) peaks are found. In this
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Fic. 1. Calculated peaks of #, and | 7 | vs. temperature. A = B = 1077 cm®sec™?, P, =
101 sec™, E = 0.316ev, my = N = 10°cm3, n, = 108cm=3, B = 1K/sec, n,, = 10cm3,
To = 90°K.

case the chosen recombination and retrapping probabilities 4 and B are the same
whereas m, is larger than n, by two orders of magnitude. It is to be noted that
this case is not the “classical” first order case where recombination is the domi-
nating process as compared to retrapping. In this case, the recombination rate
Am and the retrapping rate B(N — n) are about the same in all the temperature
range, yet the geometrical factor p, = 8/w is 0.418, where 6 = T, — T, and
w = T, — T; and where T, is the temperature at the maximum intensity, and
T, and T, the low and high temperatures at half intensity, respectively. In the
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present case, the curves of n, and | 72 | have the same shape, thus the p, value
is the same for both. This value of ~0.42 is characteristic of first order peaks [9].
Apart from the fact that a first order peak was thus found by the numerical solution
of the differential equations without any additional assumption, the occurrence
of first order peak can also be explained as follows. Assuming that |7, | < |7 |
and n, < n, it was found [1] that

Am
Am + B(N —n) *

I = snexp(—E[kT) (19)

The term Am|(Am + B(N — n)) is reduced to unity when Am > B(N — n),
thus yielding the usual first-order equation. In the present case, however, this
term is very close to being a constant as well, although its value is 4; thus the first
order peak results. Another important characteristic of the present case is that
both the 7, and | 7 | peaks have exactly the same shape.

Figure 2 shows the TL and #, peaks where A = B and m, = n, . The TL peak
is of second order kinetics, which is characterized by p, = 0.525 [9]. Another
feature of these curves is that the maximum of the TL peak appears at a lower
temperature than the corresponding maximum of the n, curve. This effect has
already been proved generally [10]. Thus, in principle this shift should have
appeared in Fig. 1 as well, but the effect can be shown to be negligibly small
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FiG. 2. Calculated peaks of n, and |m|. A = B = 1007 cm®sec™®, my, = n, = 108 cm™3,
N = 10¥cm™3, Py = 10%sec?, E = 0.316ev, B = 1K/sec, n,, = 4 x 10°cm=2, T, = 140K.
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Fic. 3. Calculated peaks of n, and |m]. 4 = 3 X 105cm®sec™, B = 10~ cm®sec™?,
my = ny, = 108cm=3, N = 10 cm3, P, = 10¥ sec™?, E = 0.316ev, B = 1K/sec, o = 0.8 cm™3,
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Fic. 4. Calculated curves of n, and |m). 4 = 5 x 10~*cm?sec™l, B = 1077 cm®sec™?,
my, = 107cm™3, n; = 10°cm™3, N = 10 cm=3, P, = 10®sec?, E = 0.316ev, 8 = 1K sec™,
n, = 8.5cm3, T, = 120K.
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when m changes only slightly during the process, as is the case in Fig. 1. The
broad n, peak is also to be noted; this effect was described by Saunders [11].

Figure 3 shows the two peaks for my =n, and 4 =3 X 10-% cm?®sec! and
B = 10-7 cm® sec~L. The parameters were chosen such that the TL peak would be
neither of first nor of second order kinetics. The resulting curve is characterized
by u, = 0.468. This value may correspond to an effective order of kinetics, /, [12]
which is between 1 and 2 (about 1.4 in this special case).

Figure 4 gives the TL peak and the n, curve for 4 = 5 X 10~4cm?sec™t,
B =10"7cm®sec™?, my=107cm~® and n, = 108 cm=3. This figure has two
peculiarities: the n, curve is steadily increasing exponentially in the range of
interest as found experimentally for semiconducting diamonds [13] and discussed
for certain cases [4], and the y, value found for this TL peak is extremely small,
about 0.308 which does not correspond to any reasonable effective order of
kinetics. Such peaks, which are rather rarely found in experiments, were mentioned
by Halperin and Braner [1] who showed that such an effect should be expected
when there is a shortage of luminescence centers (namely, m, < n,). It is to be
mentioned, again, that as compared to the peaks of Halperin and Braner, the
curves are found presently without the assumption |4, | <€ | # .

TABLE I
Representative Values for Checking the Validity of the Condition | 7, | <€ | # |

T(K) ()T, | D)) | aT)T) TK) m(T)r(Tn) |#TYr(T) | alT)A(T))

Curve 1 Curve 3

90 83 x10* 50x10% 50x10° 110 43 x10* 1.7 x10* 1.7 x 10
95 71 x10®* 40x10* 40x10* 120 69 x 10°* 85x 105 85 x10®
100 49 x 102 36 x10* 36 x10* 130 7.1 x10® 73 x10°% 73 x 10
105 25 x 10 30x10* 3.0x10* 140 45x10' 69 x10® 69 x 105
110 85 x107* 15x10* 15x10* 150 99 x 10! 84 x 105 84 x 10-%
115 6.0 x 10-* 4.0 x 10* 40 x 10* 160 2.5x 107* 64 x 107 6.4 x 10-3

170 3.6 x 102 55 x 10~* 5.5 x 10

180 74 x 103 1.6 x 10-% 1.6 x 103

Curve 2 Curve 4

140 1.3 x 102 50 x 102 48 x10-2 120 3.6 x 102 1.0 x10* 1,0 x 10*
150 72 x10* 1.6x10% 1.6 x10% 125 12x10* 51 x10% 51 x 105
160 3.0 x 10 14 x102% 14x102 130 3.6 x10* 6.1 x 105 6.1 x 10-®
170 7.8 x 107* 12 x 102 12x10%* 135 8.6 x 10' 1.4 x 10~* 14 x 10*
180 9.8 x 107* 99 x 10* 98 x10° 140 19 x 10 4.5 x 10 4.5 x 10-®
190 6.0 x 10* 5.6 x 10-® 55 x 10~®* 145 1.5x 107 8.7 x 10® 1.0

200 26 x10' 51x102% 51x10®* 150 1.5x10"2 19 x 10® 1.0

210 1.0 x 107* 3.4 x 10* 3.6 x 1072 155 19 x 107 32 x 10 10

220 41 x10% 85x 102 93 x 10*

581/10/2-8
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Table I gives some results of the test for the validity of the condition | 7, | < | # |
usually assumed in TL theory for the four cases given in Figs. (1-4). The values
of n(T)[n(T,,) in column 2 show the position of the various TL points as compared
to the maximum. The corresponding values of columns 3 and 4 are equal as long
as the above-mentioned condition is fulfilled; the values of | #(T)/m(T)| are
small in these ranges. It is clearly seen that the condition is not satisfied any more
in the case related to Fig. (4) at temperatures above the maximum.

Table II summarizes the results found for various sets of given parameters
including those shown in Figs. (1-4) (Nos. 6, 10, 9 and 3 in the table, respectively).
The table is arranged according to the increasing values of u,, namely, starting
from the case of “shortage of centers” through first order kinetics, “intermediate”
order and second order TL peaks.

CALCULATION OF ACTIVATION ENERGIES

Having developed a simulating model for TL and TSC phenomena, it is easy
to evaluate the theoretical accuracy of methods for calculating crystal parameters
from TL and TSC curves. We were interested in certain methods for calculating
the activation energy E.

These methods, using temperature of the peak maximum 7,, and the half
intensity temperatures 7; and T, were developed under the assumption that the
peak has a definite order of kinetics. The order was assumed to be first or second
in various methods, and any order / between 0.7 and 2.5 when interpolation (and
extrapolation) between first and second order cases was applied [12]}. In order to
check the methods, we applied them to the general glow peaks calculated by the
present method in order to find whether an effective value of / can be found such
that the solution of —7# = s’ exp(—E/kT)n’* would be close enough to our glow
curve so that the methods for finding E from the latter can be used for the former.

The three equations given by Chen [12] are

E, = [1.51 4 3.0(, — 0.42)] kT2/7 — [1.58 + 4.2(u, — 0.42)] 2kT,,,, (20)
Es = [0.976 + 7.3(p, — 0.42)] KT,.2/S, Q1)
E, = [2.52 4+ 10.2(s, — 0.42)] kT2 — 2kT,, , (22)

where 7 is defined by 7+ = T,, — T, . Table III gives the found values of E, , E;,
E,, u, and T, for the 10 first curves given in Table II. Apart from the rare first
three cases which have “abnormal” shape [1], all the methods give rather good
values, E, being the best. As could be expected from an interpolation method,
the values are excellent where the circumstances are such that the peaks are close
to be of first or second order. For E, , however, the deviations from the correct
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TABLE 111
Activation Energies by Various Methods

No. E, E. Es E., e T,
1 0.316 0.311 —0.437 0.141 0.234 136.5
2 0.316 0.318 —0.215 0.186 0.256 136.6
3 0.316 0.342 0.114 0.276 0.308 136.8
4 0.316 0.315 0.306 0.314 0.416 109.9
5 0.633 0.630 0.631 0.628 0.416 219.8
6 0.316 0.316 0.309 0.316 0.418 12.1
7 0.316 0.315 0.317 0.318 0.420 148.1
8 0.316 0.323 0.341 0.336 0.454 148.6
9 0.316 0.331 0.344 0.339 0.468 149.1

10 0.316 0.314 0.325 0.321 0.525 177.8

value do not exceed 59 even for intermediate order cases. This is usually com-
parable to the possible experimental error. Even for the three first cases, the E,
method gives good results since the “abnormality” of the peaks is demonstrated
mainly in the high temperature portion.

SUMMARY AND CONCLUSIONS

The three simultaneous differential equations governing the processes of thermo-
luminescence and thermally stimulated conductivity have been solved, for the
first time, to the best of our knowledge, with no additional a priori assumptions
made about the functions m, n and n,. The results are used for examining the
assumptions made by previous investigators showing that those assumptions were
usually rather good. Methods for evaluating the activation energy E were applied
to the computed peaks, showing that at least one of these methods is very good
for evaluating activation energies. It was seen, however, that the peaks’ shapes
are less sensitive to the other parameters (see also [6, 7]) and therefore the evalua-
tion of these parameters (4, B, P, , etc.) would be much harder using only three
measured values like T,, T, and T, . More experimental points should be used,
as well as information on the corresponding TSC curve. An investigation along
these lines is under way now, and the results seem to be rather promising.

As mentioned above, the kinetics order depends on the ratio between Am and
B(N — n). This “order” will remain constant if Am > B(N — n) or Am < B(N — n)
is true throughout the peak. This inequality can, however, change direction during
the process so that the term “kinetics order” may become meaningless. This
explains the “abnormality” of the first three peaks in Tables I and II (see also

[1, 5]).
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Note. While considering some corrections in the manuscript as required by
the referees (October 1971), we learnt of a paper describing the numerical solution
of the equations governing the thermally stimulated processes (P. Kelly, M. J.
Laubitz and P. Braunlich, Phys. Rev. B4 (1971, 1960-68)). The computational
method used in that paper was, however, entirely different and so were the chosen
ranges of the parameters and some of the conclusions.
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